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Abstract. Let &, &,, ... be independent identically distributed
random variables defined on some probability space (2, +/, P) and
taking their values in a measurable space (X, &) according to the
probability distribution g on .@ defined by u(B):= P(¢,€B), Be&.

Let

,u,,:=n“(s§l+ o )
be the qmpirical measure on & based on &4, ..., £, and, given a class
E < B, let

ﬂn(c) = n”z(ﬂn(c)_ﬂ(c))a CG'@’

be the empirical % -process, considered as a stochastic process
indexed by ¥. Various properties of f, as n— oo are studied.

Dudley [6] gave general conditions for the convergence in law of §,
= (Ba(C))cee to a certain Gaussian process indexed by % (in which case ¥ is
) called a u-Donsker class). It is the purpose of the present paper to give some
further 1llustrat10ns of some of the main results of Dudley. .

Along this it is shown that Dudley’s sufficient condition (for 4 belng
a u-Donsker class) based on metric entropy with inclusion applies to classes
% allowing, in a certain sense, a finite - dimensional parametrization (Section 2).

It (X, 4) is the Euclidean space R, k > 1, with its Borel o-algebra 2(RY),
two specific examples considéred in Section 3 are the class 4 = % (R¥
consisting of all closed Euclidean balls and the class € = {(— o, ¢]: tc R*}.
Both are u-Donsker classes for any probability measure z on #(R¥); even
more, it is shown that #"(RY) is a Vapnik - Chervonenkis class and also pe-
~ Suslin in the sense of Dudley [6] and, therefore, o (R¥) is a Strassen log log
class 1n the sense of Kuelbs and Dudley [12].
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We hope that our presentation may. contribute to make further propa-
ganda for Dudley’s central limit theory for empirical measures.

1. Intreduction and preliminaries. Let &,, &,, ... be independent identically
distributed random variables defined on some probability space (2, o7, P)
and taking their values in a measurable space (X, #) according to the
probability distribution or law u on # defined by u(B):= P(¢,€B), Be A.
Throughout it will be tacitly assumed that (Q, o/, P) is the countable
product (X%, #", u) of copies of (X, %, y and that the éj‘s are the
coordinate projections (canonical model). :

Let p,:=n 1(4-:;1 . +¢&;,) be the empirical measure on 2 based on the
first n observations, where g(B) := 1po&, BeB.

Given a class € = 4, let B,(C) : = n'/? (u,(C)— u(C)), Ce%, be the empir-
ical % - process, considered as a stochastic process indexed by %.

From the central limit theorem in finite - dimensional vector spaces we

know that, at least when restricted to a finite subclass of %, B, converges in

law to a Gaussian process G, = (G,(C))ces, Where

E(G,(C)=0 for all Ce¥
and

cov (Gn(cl)a Gu(cz)) = /-‘(Cl ncz)—ﬂ(cl)ﬂ(ci)’ ' Cl; C2 €€.

In the classical case where (X, %) is the unit interval [0, 1] with its Borel
g-algebra Z ([0, 1]) and p is the Lebesgue measure on [0, 1], the empirical
% - process for € := {[0, t]:t[0, 1]} coincides with the so-called uniform
empirical process a,(t) :=n"*(F,(t)—t), te[0, 1], F, being the empirical
" distribution function based on ¢, ..., &,. In this case the corresponding

limiting process G, is the Brownian bridge B° = (B°(t)),q0,1; With paths in the
space C [0, 1] of all continuous functions on [0, 1].-Furthermore, Donsker’s
_invariance principle states that not only convergence in law of the finite -
dimensional distributions of a, to those of B° takes place but — even more
— that a,, considered as a sequence of random elements in the space
- D[0, 1] of all right continuous functions on [0, 1] with left - hand limits,
converges in law to B°.
~ Here we follow Dudley’s definition (see {3] and [4]) of weak convergence
. (convergence in law for random elements) in non -separable metric spaces S
=(S, 0): .

(1.1) Given a sequence of random elements #, in S, n=0,1, 2, ..., ie.
., %B,-measurable mappings from some basic probability spaces
(L2, #,, P) into S with laws £ {n,} defined on %, where %, is the
o -algebra generated by the open g-balls in S, #, is said to converge in law

t0 7o (1, > o) if
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(i) Z{no} concentrates on a separable subspace S, of S;
(i) E(fon) —E(fone) for every continuous, bounded, and %,-
measurable function f: § — R.

In the before - mentioned invariance principle of Donsker, #, = a, and #,
= B° may be viewed as random elements in § = D[0, 1] endowed with the
supremum metric ¢, and convergence in law of a, to B° is to be understood
as o, % B° in the sense of (1.1), S, being the separable subspace C[0, 1] of
(D[0,.1], o) (cf. [11], Section 2.1).

Going back to the general empirical ¢ - process B,, in order to obtam a
JSunctional limit theorem (invariance principle) like g, % G, we have to look
first for appropriate spaces S and S, serving as sample spaces for 8, and G,.
For this Dudley [6] introduced the spaces C®(%, u), respectively S0
= YCY¥, ) and S = Dy(%, ), defined as follows:

CY%, ) :={f: € >R, f bounded and continuous
with respect to the L,(u)-norm on %},

where f is called continuous with respect to the L,(u)-norm on % if, for any
sequence (Cpy=o,1,.. in %, f(C,) - f(Co) provided that

{1, —1c *dp = p(C,ACp) >0  as n—
X

%C"(‘g, W:={f: € >R, f bounded and uniformly continuous
with respect to the L,(z)-norm on %}.

Note that in the classical case of the uniform empirical process we have
UCH(€, p) = C[0, 1] whereas #C*(¥%, p) # C[0, 1] in general, i.e. if u is not
the Lebesgue measure. Indeed, consider, for example, [1 =g, for some
to€[0, 1] and define

for C=1[0,1¢], t <t

0
f(C)-={1 for C=[0, ], t > to;

then fe#C%, p) but f¢C[O0, 1].

The other space, i.e. Dy(%, 1), is now defined as the linear space gen-
erated by C’(%, ) and all functions C - ¢,(C), xe X.

Note that the empirical € -process B,, ne N, takes its values in Dy(%, p).

Let B, = #,(Do(%, 1), ) be the o-algebra in Dy(%, y) generated by the
open g-balls, where ¢ is the supremum metric in Dy(%, p), ie.

of, 9):= gglf(oég(ah £, 9€Dy(%, p.

Then, in order to look at B, as random elements in S = Dy(%, p) it is
necessary to find conditions on ¥ and p such that




4 P. Gaenssler

(Mo)  B.:R2 - Dy(%, u) is measurable from the measure -theoretic compl-
etion of (2, o, P) to (Do(%, 1), %) for each neN.

If (My) holds, then ¥ is called empirically measurable for u (€ is u-EM).

As remarked by Dudley [6], a countable class ¥ — & is always u-EM
for any u; more generally, if ¢ has a countable subclass 2 such that for all
Ce% there are D,e @ with 1p,(x) = 1c(x) for all xe X, then € is u-EM for
any u. As an example, in X = R* k> 1, we have

~-(1.2) the class ¥ = A (R of all closed Euclidean balls or the class ¢
= 4(R") of all half intervals (— oo, t], te R, is u#-EM for any probability
measure u on the Borel o- algebra (R in R*.

Besides (M;) Dudley [6] introduced a second much stronger (,ue-Suslin)
measurability condition playing an essential role for - Donsker classes % to
be Strassen log log classes for u in the sense of Kuelbs and Dudley [12] (see

(3.3) below). Let us recall here the corresponding basic definitions.
' A measurable space (Y, %) is called a Suslin - measurable space if there is
a metric on Y for which % is the o -algebra of Borel sets and such that there
is a continuous function from a Polish space onto Y.

Given a probability space (X, 4, u), a class € = %, and a o - algebra S
of subset of ¥, we say that (X, .@ %, &) is pe-Suslin if the following
conditions hold:

(1) (X, #) and (%, y) are both Suslin-measurable spaces;

(ii) the e-relation, {{x, C)>:xeC}, is a measurable subset of X x% for
the product o -algebra of # and & generated by the rectangles Bx S, Be 4,
Se;

(111) for the pseudometric d, on ¥ defined by

d,(Cy, Cy):= IJ(C1AC2) C,, C,€6,

all d,-open sets belong to .&.
_If the condition '

M, (X, 4%; %, %) is pe-Suslin for some &
" holds, we say that (M,) is satisfied for € and .-

. It is shown in [6] that (M,) implies (M;). Furthermore, with a similar -

proof as that of Propositions (4.5) and (4.3) in [6] we obtain
(1.3) Let X =(X, €) be a locally compact, separable metric space and ¥ a

collection of continuous real functions on X. Suppose that & is a o -algebra of

subsets of 9 such that, for each xe X, g = g(x) is & -measurable. For ge 9 let
pos, (g) : = {xe X :g(x) > 0}

whence

pose(9) : posy(g):ge¥}
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where & is the collection of all closed subsets of X. Let #(%) be the Effros-
Borel structure on F, i.e. B(F) is the o -algebra of subsets of F generated by
all sets of the form {Fe,/ F cH}, He %. Then the map g — posy(g) is &,
AB(F)-measurable. Furthermore, if (9, &) is a Suslin-measurable space, then
(M,) is satisfied for posy(%) and any probablhty measure p on the Borel o -
algebra #(X) in X.

If (M) holds for ¢ and p, if, in addltlon G, =(G, (C))Celg has a version
taking its values in the space So = #C*(C, ), and if #CP(%, ) is separable
with respect to the supremum metric ¢, then G, as well as f, may be
regarded as a random element in Dy (%, u) and (1. 1) makes sense for 1, = f,

and 7o = Gu, in which case, ie. if ﬁ,,—»G,,, we say that € is a p-Donsker
class. -

2. Empirical proceseos indexed by classes of sets allowing a finite-
dimensional parametrization. Let again (X, %, y) be a probability space and
% — #. For each ¢ > 0 let Ny(e, %, u) be the smallest n such that for some
Ay, ..., A,€ B (pot necessarily in ¥) and for every Ce% there exist i, j with
A;cCc A; and pu(4;\4;) <e. On the other hand, let N(e, €, p) be the
smallest n such that : :

%=1 %;
i=1 -
for some classes ‘6 with sup {d,(4, B): 4, BE%} 2¢ for each j. Then

log N(s, 4, p) is called a metric entropy and log N,(e, €, p) is called a metric
entropy with inclusion. It is easy to see that

(2.1) N(g, €, w) < oo for each ¢ > 0 iff (¥, d,,) is totally bounded, in which
case (UC"(¥, p), @) is separable. Furthermore, N(e €, )< Nile, %, ) for
- each ¢ >.0, any ¥ c A, and any p.

.As shown in [4] and [5], p. 71, G, = (G,,(C))ng has a version taking its
values in #C%%, w) if

Eo) - - [(og NG € p)lfdx<ow, -
. 0 ;
in which case (%C*(%, p), o) is also a separable space (cf. (2.1)).
Replacing (Eo) by the stronger entropy condition
. .
(E,) [(log Ny(x2, €, w)*dx < o,
0

Dudley ([6], Theorem 5.1) obtained' one of his main i'esults:

('2.2) If (My) and (E,) are fulfilled for a class € ¢ # and a probability
measure |1 on B, then € is a u-Donsker class.




6 - P. Gaenssler

To illustrate the broad scope of applicability of (2.2) we will first prove an
invariance principle for empirical % - processes indexed by classes € allowing
a finite - dimensional parametrization in the sense of the following theorem:

(2.3) THeorReM. Let X be a locally compact, separable metric space, #
= B(X) the o - algebra of Borel sets in X, and let K be a compact subset of R,
12> 1. Suppose that f: X xK — R is a function satisfying the following three
conditions (with respect to a given probability measure u on %):
(1) .:=f(,2): X >R is continuous for each zeK;
~(ii) f.(x): K > R is “uniformly Lipschitz”, i.e

M :=sup sup {£,()—f(9lz—21"1: z#£7, z, 2€K} < 0,
xeX

where |z—z'| denotes the Euclidean distance between z and z';-
(i) pu({f,e[—e, &)}) = O(e) uniformly in zeK.
Let € = # be defined by € :={{f, 2 0}: zeK}.
Then € is a p-Donsker class; furthermore, (M,) is satisfied for € and p.

Proof. Without loss of generality we may and do assume that K

.= [0, 17". For each meN let

I, := {te[o0, 1]: t—z/2"‘,i—01 L 2m,

We will first show that (E;) holds true. For this let 0 <& <1 be given and
choose m = m(g) so that

(+) 27m S e/M <27,

where M (0 < M < o) is the constant given by (ii). Now, for each zeK
= [0, 17 there exists.z; €I, such that |z—z; | < 27" < &/M, whence accord-
ing to (ij) we have

.—& Sf,(x)—j;'.o(x)Ss for all xeX,
v._'hich implies
A= U 20 >0 c (fy > e} =:4
Furthermore, A4,

Zlo'
{5 e[ ¢, €)}, and so by (i) we get

nd,, \A;, ) <Cie

z,o

io\ zlo

for some constant C, indepcndent of z and z;. It follows that
mi={Az Ay 21€1, } « B(X)

(according to (i) and that for each Ce% there exist sets A4;, A;eo/, with
A;=Cc Ay and p(A;\4) < C,¢. Since card (..czf,,,) 22" and since 2"
< 2Me™! by (+), we obtain Ny, %, u)< C,&¢™! for some constant C,,
which implies (E,). :
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It remains to show that (M,) is satisfied for ¥ and p (which implies (M,)
yielding together with (E,) the assertion that % is a pu-Donsker class
according to (2.2)). But for ¥ :={f,: zeK} and & := ¥nR(C(X)), where
#(C(X)) is the Borel o -algebra in the space C(X) of all continuous functions
on X endowed with the metric d defined by

d(f, g):= 3, 27"min {1, sup|f(x)—g()I},

neN xeKp,

" (K-~ being a monotone increasing sequence of compact sets in X with

U int (K,) = X (note that every locally compact, separable metric space is a
nelN

o- compact space), the assumptions of (1.3) are fulfilled. Since in the present
situation (¥, &) is also a Suslin - measurable space (as the continuous image
of K), the assertion follows from (1.3).

(24) Examples. (a) Let (X, 4, p) := ([0, 11, #([0, 119, &), k=1, 4
being the k - dimensional Lebesgue measure, and let € < # be the class of all
closed Euclidean balls in X = [0, 1]% Then % is a 4,- Donsker class and (M,)
is satisfied for ¢ and 4,.

In fact, take

K:={z=, r): yelo, 11 ref0, r,1, r, : = sup {u: B(y, w) = [0, 1]*}},

where B(y, u) := {xeR*: e(x, y) < u} (e denoting the Euclidean dlstance in
[0, 11, and define f: [0, 1J*xK — R by -

(2.5) f(x,2):= e(x C(int B(y, r))) e(x, B(y,r) (z=(,nekK), ie.
fx,z)y=r—el(x,y), where C(mt(B(y, r))) denotes the complement of the
interior of B(y, ). .

Then {{f,>0}: zeK} is the class of all closed Euclidean balls in X
=[0, 17* and it is easy to verify conditions (i)-(iii) of Theorem (2. 3), giving
the result.

(b) As a further example one may consider the same probablhty space
(X, @, p) as in (a) and ¥ = {[0, £]: te[O0, 1]} to get a /1,, Donsker class
satisfying (M,) (cf. [13], [16], and [1]). -

(c) One can show that we can apply Theorem (2.3) also in the case u = 4
and ‘ .

% = {(C+2) N[0, 1]*: ze[0, 1]}, |

C being a fixed closed and convex subset of X = [0, 175 k=1 (cf. [14]),
teking as in (2.5)

f(x, 2) :=e(x, C(int C,))—e(x, C;), x,ze[0, 17%

with C, :=C+:z.
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In fact, it is easy to show that both conditions (i) and (ii) 6f Theorem (2.3)
are fulfilled assuming only that C is closed. As to (iii), in the present situation
we have to note first that {f,e[—e, &)} = C:\,C, for all ze[0, 1]* (where
A= {x: e(x, A) < &} and ,A := {x: e(x, CA) > ¢}) and we can then use the
fact that, for the class %, of all convex Borel sets in [0, 1]*,

sup 4(C*\,C) < ¢e  for &|0

Ce¥y
with some constant ¢, dependmg only on k (cf. [10]). Consequently, we infer
that '

Sup }'k(c \z z) - ()
ze] 0,17%. .

which is equivalent to 4,(C*\,C) = O(c) (due to the translatlon invariance
of 4,), whence (iti) is also fulfilled.

* This consideration also shows that the set of all translates of a fixed
closed (not necessarily convex) set C is a 4, - Donsker class provided that C
has a smooth boundary in the sense that 4,(C°\,C) = O(g). On the other
hand, we know from [8] that the set of all closed and convex subsets of
[0, 1]* is not a A,-Donsker class for k > 3.

(2.6) Remarks. Theorem (2.3) still applies if in the above - mentxoned
examples 4, is replaced by any probability measure p having a bounded
density with respect to 4,. On the other hand, the assumption of K being
compact is rather restrictive. In the next section we will show that in case of
the examples (a) and (b) we can get rid of these restriction, and the whole
Euclidean space R* is then allowed to be the sample space; cf. also the final
remarks (3.9). Moreover, it will follow (cf. (3.3) below)~that under the
conditions of Theorem (2.3) € is also a Strassen log log class for pu.

3. The empirical % - process indexed by some classes %. Let (X, %) be the
Euclidean space R, k > 1, with its Borel o -algebra 2 = #(R*) and let u be
any probability measure on #(R*). Let ¢ (R*) be the class of all closed
Euclidean balls and put

F(R):={(—o0, t]: teR}.. ~— -

Note that both classes are already pu-EM (cf. (1.2); in the same way as at
the end of the proof of Theorem (2.3) it can be shown that even
(3.1) (M,) is satisfied for p and € = A (RY), or € = .#(RY), respectively.
It is easy to show that (E,) holds for ¢ = #(R") and any u, whence .#(R¥)

is a u-Donsker class (proved first by Donsker [2] for k=1 and by Dudley
[3] for k> 1). In fact:

(a) For k =1, consider for ‘any & (0 <& < 1) the partition

—00=.t0_<t1 ...<tm_1 <t,,,.'=00
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of R, where t;., :=sup {teR: p((t;, t]) < &/2}. Since u((t;, t;+,]) > &/2 and
u(R) =1, we have m—1 < 2/s. ' ‘ L

Then, taking as A4;s in the definition of N;(e, #(R), p) all sets of the form
a, (—CD, tl): (—CX), tl]! (—00, t2)a (_ws tz]a ter ('—ws tm--I)a (—0, l’m--l]a
R, we obtain

min {n: @4y, ..., A, BR)(YCe £ (R)@i, j)
A, Cc A; and p(4;\A) <&} < 2(m—1)+2 = 2m < 4/e+2 < 6e.
Consequently, log N,(¢?, #(R), p) < log 6/¢2, showing that (E,) holds for k
=1 . .

(b) For k > 1 the result is an immediate consequence of (a) and mequahty
(*) of the following lemma:

~ (3.2) Lemma. Let (X, %) be a measurable space and let u be a probability
measure on the product o - algebra ® B in X*, k > 1, with marginal laws m;p
on B,i=1,...,k. Let € < %, i= 1, ..., k, be given classes of sets and
k
€ .= {‘2(1 C;: Cie¥%;,i=1,...,k}.
Then
k
(*) NI(S’ (ga ”) S 1—[ NI(s/k9 (gin 7l'.iﬂ)‘
’ i=1

Proof. We may and do assume that n; := N,(g/k, €, m;u) < oo for each
i=1,..., k. Then there exist 4;,, ..., A, eﬂ such that for any C;e%; there
exist r,se(l,...,n} with 4, «C <4, and m y(A,sl\A,,l) <elk, i
=1,...,k. Consequently, we obtam : :

k

C =§ _Alsl and (X Als, ) i M(B")’

=

k .
- X Al'r- <
i=1 ¢

i=1

where B;:= X x ... x X x(4;\ A ) x X x ... xXb, ‘and thusm
k k
’ Z u(By) = Z niﬂ(Ais,-\Air,-) <eé.
i=t . =1 :

Since there are at most nny ... 0 approximating sets of the from

k- k )
X A,,l €QR B,
i= 1

inequality (#) holds true.

Next, one of the main theorems in [12] states that for any probablhty
space (X, %, u) we have the following result:




10 P. Gaenssler

(3.3) If (M,) is satisfied for a class € = % and p and if € is a ;i-Donsker
class, then € is a Strassen log log class for p, i.e. with probability one the set

Ba(C) _
{(W)C#' nz no}

" is relatively compact (with respect to the supremum metric g in Dy (%, w)) with
the limit set

By :={C— | fdpu, Ce(g:feB},

where
B:={fel}(X,®, p: [fdp=0 and [|f1*dp<1}.

 Since we have shown before that for (X, %, u) = (R, %’(R“), p) the class
€ =S (K satisfies (M;) and is p-Donsker for any yu, we obtain from (3.3)
the results of Finkelstein [9] and Richter {15], namely:

(34 F(RY is a Strassen log log class for any probability measure p on
B(RY.

That the same holds true for ¥ = " (R*) can be derived from the
following result of Dudley ([6], Theorem 7.1) and Kuelbs and Dudley ([12],
Corollary 2.4), respectively:

(3.5 (i) If (M,) is satisfied for a class € and p and if € is a Vapnik-
Chervonenkis class (VCC), then € is a p-Donsker class. :

(i) If (M,) is satisfied for p and a VCC €, then ¥ is a Strassen log log
class for p.

In this context, given a probability space (X, %, u), a class € < # is

~ called a Vapnik - Chervonenkis class if there exists a natural number s such
that for all F = X with card (F) = s there exists a subset F, of F which

" cannot be represented in the form Fo, = FNC for some Ce%, ie. “%" does
not cut all subset of F”.

, In view of (3.5) and (3.1) it remams to show that € = # (R¥ is a VCC in
order to get :

(3.6) A (R* is a p- -Donsker and a Strassen log log class for any pro-
bability measure u on Z#(RY).

The following nice proof for J¢ (R¥) beirig a VCC was communicated to
us by Flemming Topsge; it is based on the auxiliary results (3.7) and (3.8):
(3.7 Rapons THeorem (cf. Valentine [17], Theorem 1.26). For any
Fc R k>1, with card (F) > k+2 there exists a partition of F into two

disjoint subsets F, and F, such that Co (F)nCo (F,) # @, where Co (F)
denotes the convex hull of F,.
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(3.8) For any two closed Euclidean balls Cy, C, in R*, k > 1, we have
Co (C\C)NCo (C,\Cy) =9

Now, to prove that # (R¥) is a VCC it suffices to show that for each
F = R* with card(F) = k+2 there exists a subset F, of F which cannot be
represented in the form Fy, = FNC for some Ce X (R*). For an indirect
proof, suppose that for each F, — F there exists CeJ (R¥) such that F,
. = FnC. This implies that for the F;’s of (3.7) which decompose the given F
there exist C;e# (R*) such that F; = FnC,, i = 1, 2. Since FIan =0, we
have F, c Cl\Cz and F, c C;\Cy, and therefore

Co(Cl\Cz)nCo(Cz\Cl) > Co(F)nCo(F,) # 9,
Wthh contradicts (3.8). -

39 Remarks. The statement that ¢ (RH is a VCC follows also from
Theorem 7.2 of Dudley [6]. Furthermore, Dudley [8] even showed that the
so -called Vapnik - Chervonenkis number V(" (R¥) equals k+2; cf. also [19]
for an easier proof of the latter. In the same paper [19] Wenocur and
Dudley gave another proof for #(R*) being a VCC (see also Proposition
(7.12) of Dudley [6]) by computing its Vapnik - Chervonenkis number
V(#(RY) to be k+1; therefore the argument used above for ¢ (RY) is
applicable to .#(R*) as well.
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grateful to the referee for some helpful comments on an earlier version of the
manuscript.
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