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Abstract. Let tl ,  r2, ... be independent identically distributed 
random v+ables defined on some probability space (P, sf, P) and 
taking their values in a measurable space (X, 9) according to the 
probability distribution p on B defined by p(B) : = B(S, EB), B EB. 
Let 

p , , :=n- l (~g l+  ... +E<J 

be the empirical measure on B based on TI,  . . . , t, and, given a c h s  
%' c g, let 

PAC) : = n112(~.(C) - P(C)), C E a, 
be the empirical Q-process, considered a s  a stochastic process 
indexed by Q. Various properties of 8, as n + m are studied. 

Dudley [6] gave general conditions for the convergence in Iaw of 8, 
= (B.(C))cEg to a certain Gaussian process indexed by W (in which case 'X is 
called a p-Donsker class). It is the purpose of the present paper to give some 
further illustrations of some of the main results o f ' ~ u d 1 e ~ .  - 

Along this it is shown that Dudley's sufficient condition (for W being 
a p- Donsker class) based on metric entropy with inclusion applies to classes 
%? allowing, in a certain sense, a finite -dimensional parametrization (Section 2). 

B (X, 99) is the Euclidean space P, k 2 I, with its Bore1 a-algebra a(*, 
two specific examples considered in Section 3 are the class V = X(RC) 
consisting of all closed Euclidean balls and the class $9 = {(- m, 01 : a ~ p ) .  
Both are p-Donsker classes for any probability measure p on a(@); even 
more, it is shown that X ( P )  is a Vapnik-Chervonenkis class and also p ~ -  
Suslin in the sense of Dudley 161 and, therefore, X(@) is a Strassen log log 
class in the sense of Kuelbs and Dudley [12]. 
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We hope that our presentation may contribute to make further propa- 
ganda for Dudley's central limit theory for empirical measures. 

mdom a d  preKdrnde!s. Let r l ,  [,, . . . be independent identically 
distributed random variables defined on some probability space (9, d, P) 
and taking their vakes in a measurable space ( X ,  6%') according to the 
probability distribution or law p on a defined by p(S) : = B(5, E B), BE a. 
Throughout it will be tacitly assumed that (a, d, P) is the countable 
product ( X y  gN, pN) of copies of (X, B, p) and that the g;s are the 
coordinate projectitrns (canonical model). 

'Let p, : = n - l ( ~ < ~  + . . . +E<J be the empirical measure on $9 based on the 
first n observations, where %(B) : = ls0 t, B E B. 

Given a class %' c 9, let Bn(C) : = n1I2 ( ~ ( c )  - p(C)), C E< be the empir- 
ical W-process, considered as a stochastic process indexed by W. 

From the central limit theorem in finite-dimensibnal vector spaces we 
know that, at least when restricted to a finite subclass of W, fin converges in 
law to a Gaussian process G, = (G,(C)),-,,, where 

E(G,(C)) = 0 for all C ~ 5 % '  
and 

In the classical case where (X, g) is the unit interval [0, 11 with its Bore1 
a -algebra B ([O, 11) and p is the Lebesgue measure on [0, 11, the empirical 
% -process for V : = { [ O ,  t ]  : t E [O, 1 1 )  coincides with the so -called uniform 
empirical process a,(t) : = n1I2(~ , ( t )  - t), t E [0, 11, F, being the empirical 
distribution function based on c,, ..., c,. In this case the corresponding 
limiting process 6, is the Brownian bridge BO = (Bo(t)),e,,,l with paths in the 
space C [0, 11 of all continuous functions on [0, 11. Furthermore, Donsker's 
invmiance principle states that not only convergence in law of the finite- 
dimensional distributions of a, to those of B0 t&es place but - even more 
- that a,, considered as a sequence of random elements in the space 
DCO, 11 of all right continuous functions on 10, 11 with left -hand limits, 
converges in law to BO. 

Here we follow Dudley's definition (see [3] and [4]) of weak convergence 
. (convergence in law for random elements) in non-separable metric spaces S 
= (S, el: 

(1 . l )  Given a sequence of random elements q, in S, n = 0, 1 ,  2, . . . , i.e. 
d,, ~2?~-measurable mappings from some basic probability spaces 
(a,, sf,, PA into S with laws 3 {q,)  defined on A?b, where Bb is the 
a-algebra generated by the open e -  balls in S, q, is said to converge in law 
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(i) 3 [q,}  concentrates on a separable subspace So of S; 
(ii) E( f oqJ + E( f oq,) for every continuous, bounded, and .gb - 

measurable function f : S + R. 

In the before -mentioned invariance principle of Donsker, q, = a, and qo 
= BO may be viewed as random elements in S = D[O, 11 endowed with the 
supremum metric e, and convergence in law of u, to Bo is to be understood 
as an 5 B" in the sense of (1.11, So being the separable subspace C[O, 11 of 
(DCO, 11, e) (cf. [ll], Section 2.1). 

Going back to the general empirical V -process fi,, in order to obtain a 
functional limit theorem-(i(variance principle) like /I, 4 G, we have to look 
first for appropriate spaces S and So serving as sample spaces for fin and G,, 
For this Dudley [6] introduced the spaces Cb('B, p), respectively So 
= @Cb(%', p) and S = DO(%, p), defined as folbws: 

Cb(V, p) : = { f : g -+ R, f bounded and continuous 

with respect to the L,(p)-norm on %), 

where f is called continuous with respect to the L,(p)-norm on %' if, for any 
sequence (C,Jn=o,t,... in W, f (C,) -* f (Co) provided that 

@Cb(W, p) : = (f : %f -, R, f bounded and uniformly continuous 

with respect to the L,(p) -norm on %). 

Note that in the classical case of the uniform empirical process we have 
%Cb(%, p) = C[O, 11 whereas %Cb(V, p) # CCO, 11 in general, i.e. if p is not 
the Lebesgue measure. Indeed, consider, for example, p := E+, for some 
to E [0, I] and define 

0 for C = LO, t], t < to, 
1 for C=[O,t], tat,,; 

- 
then f E 4Cb(g, p) but f 4 C[O, I]. 

The other space, i.e. Do(%, p), is now defined as the linear space gen- 
erated by e(%', p) and all functions C -+ &,(C), x E X. 

Note that the empirical %'-process B,, n EN, takes its values in Do(%?, p). 
Let gb = Bb(D,(%', p), Q) be the a - algebra in Do(%', p) generated by the 

open e -balls, where Q is the supremum metric in Do(%, p), i:e. 

Then, in order to look at 8, as random elements in S = Do(%, p) it is 
necessary to find conditions on %' and ,u such that 
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(M,) fin : Q -t D,(V, p) is measurable from the measure - theoretic compl- 
etion of (a, dl P) to (Do(%', p), Bb) for each  EN. 

If (M,) holds, then V is called empirically measurcable for p (% is p - EM). 
As remarked by Dudley [6], a countable class 48 c &? is always p-EM 

for any p ;  more generally, if has a countable subclass 9 such that for all 
C E W  there are D, E 9 with 1,,(x) + lc(x) for all x E X, then %' is p - EM for 
any p. As an example, in X = P, k 2 1, we have 

- (1.2) the class V = X(P) of all closed Euclidean balls or the class V 
= $(P) of all half- intervals (-a, t], t G Rk, is p - EM for any probability 
measure p on the Borel c -algebra B(P) in P. 

Besides (M,) Dudley [6] introduced a second much stronger (p E - Suslin) 
measurability condition playing an essential role for p - ~ o n s k e r  classes %' to 
be Strassen log log classes for p in the sense of Kuelbs and Dudley [I21 (see 
(3.3) below). Let us recall here the corresponding basic definitions. 

A measurable space (I: 9) is called a Suslin - wasurabEe space if there is 
a metric on Y for which S is the u-algebra of Borel sets and such that there 
is a continuous function from a Polish space onto Y. 

Given a probability space (X, g, Fc), a class V c L%, and a CT-algebra Y 
of subset of V,  we say that (X, $9; %, fl is p E - Suslin if the following 
conditions hold : 

(i) (X, 2i9) and (59, 9) are both Suslin-measurable spaces; 
(ii) the E - relation, ((x, C) : x E C), is a measurable subset of X x %? for 

the product a - algebra of i@ and Y generated by the rectangles B x S, B E  2, 
S E Y ;  

(iii) for the pseudometric d, on % defined by 

~ , ( C I ? C Z ) : = P ( C I ~ C ~ ) ,  C , , C , E ~ ,  

all d, -open sets belong to 9'. 
If the condition 

(MI) (X, a; %, 9') is p~-Susl in for some Y 

holds, we say that (MI) is satisfied for %? and p. 
It is shown in E6] that (MI) implies (M,). Furthermore, with a similar 

proof as that of Propositions (4.5) and (4.3) in [6] we obtain 

(1.3) Let X = ( X ,  e) be a locally compact, separable metric space and $2 a 
collection of continuous real functions on X .  Suppose that 8 is a a-algebra of 
subsets of 3 such that, for each x E X, g -, g(x) is d -measurable. For g E 3 let 

pose@) := + X : g ( x )  2 01, 

whence 
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where F is the collection of all closed subsets of X. Let g(F) be the Eflros- 
Borel structure on 9, i.e. a($) is the a -algebra uf subsets of B generated by 
all sets of the form ( F  E .F : F r H}, H E  F. Then the map g 4 poso (g) is 8, 
.%(9) - mensurable. Furthermore, ((Q, 6) is a Suslin - measurable space, than 
(MI) is satisfied for poso(B) and any probability measure p on the Borel a- 
algebra .g(X) in X. 

If (Ma) holds for V and p, if, in addition, G, = (G,(C))c,, has a version 
taking its values in the  space So = %Cb(C, p), and if qCb(%', p) is separable 
with respect to the supremum metric g, then G, as well as b, may be 
regarded as a random element in Do (g ,  p) and (1.1) makes sense for q, = 8, 
and tlo-= Gp,  in which case, i s ,  if b, 5 G,, we say that '$? is a p-Donsker 
class. - 

2. Empirical prc~cesses idexed by classes of sets allowimg a finite- 
dimemiom1 parametrization Let again (X, &?, p) be a probability space and 
Q c 3. For each E > 0 let NI(€, W, p) be the smallest n such that for some 
A,, . . . , A, E &3 (not necessarily in %?) and for every C G $? there exist i, j with 
A, c C c Aj and p(Aj\Ai) < E .  On the other hand, let' N(E, %, p) be the 
smallest n such that 

for some classes gj with sup (d,(A, 3) : A, BE gj] < 2E for each j. Then 
log N{E, %, p) is called a metric entropy and log N1(&, %', p) is called a metric 
entropy with inclusion. It is easy to see that 

(2.1) N(E, %, p) < m for each E > 0 if (%', d,) is totally bounded, in which 
case (@Cb(W, p), Q) is separable. Furthermore, N(E, %, p) < %?, p) for 
each s > 0, any % c a, and any p. 

As shown in 141 and [ 5 ] ,  p. 71, Gr = (GF(C))cEW has a version taking its 
values in QCb(%, p) if 

1 

(Eo) . (log IV(x2, W ,  ,!~)yl~dx < m, - 
0 

in which case (%Cb(W, p), e) is also a separable space (cf. (2.1)). 
Replacing (Eo) by the stronger entropy condition 

1 

(El) j(log N,(x2, Y,  ,v))liZdx < m, 
0 

Dudley (161, Theorem 5.1) obtained one of his main results: 

(2.2) If (M,) and (El) are fuljilled for a class % c 99 and a probability 
measure p on 9, then W is a p-Donsker class. 
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To illustrate the broad scope of applicability of (2.2) we will first prove an 
invariance principle for empirical V - processes indexed by classes V allowing 
a finite -dimensional parametrization in the sense of the following theorem: 

(2.3) THEOREM. Let X be a locally compact, separable metric space, &4 
= S?(X) the a -aIgebra of Bore! sets in X, and let K be a compact subset of R", 
I2 1. Suppose that f : X x K + R is a function satisfying the following three 
collditionr (with respect to a given probability measure p on 9): 

(i) $, : = f (., z) : X + W is continuous for each z E K ; 
(ii) $(x) : K 3 R is "uniformly Lipschitz", i.e. 

where Iz-z'I denotes the Euclidean dbtance between z lami 2';- 

(iii) p((f, E [ - E,  E ) ) )  = O (6) unifDrrn1y in z E K. 
Let W c W be de$ned by V : = (if, 2 0 )  : z EK). 
Then %' is a p-Donskw class; fiuthermore, (MI) is satis.ed for %? and g. 
Proof. Without loss of generality we may and do assume that K 

. = [O, 11'. For each m E aT let 

We will fist show that (El) holds true. For this let 0 < E < 1 be given and 
choose m = m(&) so that 

where M (0 < M < GO) is the constant given by (ii). Now, for each Z E K  
= [0, 11' there exists .zi0~I~ such that Iz-ziol < 2-" 6 &/M, whence accord- 
ing to (ii) we have 

- ~ S f . ( x ) - ~ , ~ ( x ) Q e  for all x s X ,  

which implies 

Furthermore, Az io \~z io  = ( f . i O ~ [ - ~ ,  E)], and SO by (iii) we get 

for some constant C1 independent of z and zio. It follows that 

(according to (i)) and that for each CE%' there exist sets A,, Aj€dIA with 
A, c C c Aj and p(Aj\Ai) < C1e. Since card (&A 6 2.2"' and since 2" 
< 2M&-' by (+), we obtain NI(&, %', p) 6 C2&-' for some constant C2, 
which implies (E,). 
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I It remains to show that (M,) is satisfied for %? and p (which implies (Mo) 
yielding together with {El) the assertion that %? is a p-Donsker class 
according to (2.2)). But for 3 : = (A:  z E K) and 8 : = B n g(C(X)), where 
&'(c(x)) is the Bore1 CT - algebra in the space C(X) of all continuous functions 
on X endowed with the metric d defined by 

(#A, being a monotone increasing sequence of compact sets in X with 
lJ int (K,) = X (note that every locally compact, separable metric space is a 

ndY 
a i o-cornp& space), the assumptions of (1.3) are fulfilled. Since in the present 

situation (Q, 8) is also a Suslin -measurable space (as the continuous - image 
of K), the assertion follows from (1.3). 

I (2.4) Examples. (a) Let ( X ,  S?, Cl) := (10, ljk, W([O, Ilk), Ah), k 2 1, A, 
being the k -dimensional Lebesgue measure, and let V c be the class of all 
closed Euclidean balls in X = [O, I]'. Then W is a Ak-Donsker class and (MI) 
is satisfied for %' and Ah. 

In fact, take 
I K := (z = ( y ,  r): ~ E [ O ,  1Ik, ~ELO, r,], r, := suplu: B(y, u) c [O, llk)), 

where B(y, u) : = {X E RA : e(x, y) 6 U) {e denoting the Euclidean distance in 
[0, Ilk), and define f : [0, lJk x K + R by 

(2.5) f ( x , z ) : = e ( x , C ( i n t B ( y , r ) ) ) - e ( x , B ( y , r ) )  ( z = ( y , r ) ~ K ) ,  i.e. 
f (x, z) = r - e(x, y),  where c (int (B(~ ,  r))) denotes the complement of the 
interior of B(y ,  r). 

Then ([f, 2 0):. ZEK] is the class of all closed Euclidean balk in X 
= [0, 1Ik and it is easy to verify conditions (i)-(iii) of Theorem (2.3), giving 
the result. 

(b) As a further example one may consider the same probability space 
(X, B, p) as in (a) and = ([O,t] : c E [0, Ilk) to get a Ak -Donsker class 
satisfying (MI) (cf. [13], [16], and [I]). .. 

(c) One can show that we can apply Theorem (2.3) also in the case p = rZ, 
and 

%' = ((C+z)n[O, 11': ZE[O, I]'), 

C being a fixed closed and convex subset of X = [0, Ilk, k 2 1 (cf. [14]), 
taking as in (2.5) 

f (x, Z)  : = e(x, C (int C,))- e(x, C,), x, z E 10, Ilk, 

with C, := C + z .  
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In fact, it is easy to show that both conditions (i) and (ii) of Theorem (2.3) 
are fulfilled as'suming only that C is closed. As to (iii), in the present situation 
we have to note first that { f ,  E [ -E,  E)] c Ci\,C, for all z E [O, 11' (where 
AE := (x: B ( X ,  A) < E) and ,A := (x: e(x, @A) > 6 ) )  and we can then use the 
fact that, for the class gk of all convex Borel sets in [O, I]', 

supAk(C"\,C),<c,& for €10 
C E W ~  

with some constant c, depending only on k (cf. [10]). Consequently, we infer 
that 

-. -- 
. - sup IZ,(C: \,C,) = O(E), 

t€i0,llk 

which is equivalent to Ak(CE\,C) = O(E) (due to the translation invariance 
of a,), whence (iii) is also fulfilled. 
' This consideration also shows that the set of all translates of a fixed 

closed (not necessarily convex) set C is a Ak-Donsker class provided that C 
has a smooth boundary in the sense that L,(C"\,C) = O(E). On the other 
hand, we know from [8] that the set of all closed and convex subsets of 
10, I lk  is not a A, -Donsker class for k 2 3. 

(2.6) Re marks. Theorem (2.3) stiIl applies if in the above -mentioned 
examples Ak is replaced by any probability measure p having a bounded 
density with respect to &. On the other hand, the assumption of K being 
compact is rather restrictive. In the next section we will show that in case of 
the examples (a) and (b) we can get rid of these restriction, and the whole 
Euclidean space RL is then allowed to be the sample space; cf. also the final 
remarks (3.9). Moreover, it will follow (cf. (3.3) be1ow)'that under the 
conditions of Theorem (2.3) is also a Strassen log log class for p. 

3. The empirical V-pracess indexed by same classes V. Let (X, .g) be the 
Euclidean space Wq k 2 I, with its Borel o-algebra = ~ ( m  and let p be 
any probability measure on a(@). Let X'(Rk) be the class of all closed 
Euclidean balls and put 

4(P) := {(-00, t]: % € R C ) *  

Note that both classes are already p-EM (cf. (1.2)); in the same way as at 
the end of the proof of Theorem (2.3) it can be shown that even 

(3.1) (MI) is satisfied for p and V = X(p) ,  or V = .f (p), respectively. 

It is easy to show that (El) holds for 9? = b(p) and any p, whence 9(P) 
is a p-Donsker class (proved first by Donsker [2] for k = 1 and by Dudley 
[3] for k 3 I). In fact: 

(a) For k = I, consider for 'any s (0 < E < 1) the partition 
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of $ where t i , ,  : = sup ( t  E R :  p( ( t i ,  t]) 6 ~/2]. Since p((ti, t i+  B e/2 and 
p{R) = 1, we have m- 1 < 2/~. 

Then, taking as A,'s in the definition of N,(&, 9 ( R ) ,  p) all sets of the form 
0, (-m, tl), (-a, tl], (-a, tz), (-a, tz], ... ( -00 ,  f r n - l j r  ( - 0 0 ,  tm-11, 
$ we obtain 

min [n: ( 3 ~ ~ ,  ..., Am~A9(R))( ' t lC~Y(lP))(3i,  j )  

Consequently, log N,(E', .R(R), p) < log 6 / ~ ~ ,  showing that (El) holds for k 
= I .  - - 

(b) For k > 1 the result is an immediate consequence of (a) and inequality 
(*) of the following lemma: 

(3.2) LEMMA. Let (X, a) be a mmsurable space and let p be a probability 
k 

measure on the product 0-algebra @I a in xk, k 3 1 ,  with marginal laws z i p  
I 

oil d, i = 1, . . ., k. Let gi c 9, i = 1 ,  ..., k ,  be given cIasses of sets and 

Proof. We may and do assume that ni := N,(&/k, W i ,  z i p )  < co for each 
i = 1, . . ., k. Then there exist A,,, . . ., A,, EB such that for any Ci there 
exist r i , s i € ( l ,  ..., q) with A i r i c C i c A k i  and nip(Ais i jAir i )<&/k,  i 
= 1, ..., k.  Consequently, we obtain 

k k k .  k k k 

X A i , , c . X  C i c  X Aisi and y ( X  Aiq\.X Air,)< 1 p(Bi), i= 1 I =  1 i= 1 i= 1 1 = 1  i =  1 

where B i : = X x  ... xXx(Aiq \Air i )xXx  ... x X ,  and thus - 

Since there are at most n,n, . . . n, approximating sets of the from 

k k 

X A,,,€ O a, 
i =  1 1 

inequality (x) holds true. 
Next, one of the main theorems in [12] states that for any probability 

space (X, 93, p) we have the following result: 
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(3.3) If (MI) is satisjied for a class % t lami p and if V is a p - Donsker 
clmq then %' is a Strassen log log class for p., i.e. with probability one the set 

* 

is relatively cornput (with respect to the supremum metric e in Do(%, ji)) with 
the liwumt set 

B, := {C -r j fdp, C e V :  f E B ) ,  
C 

:= (f E ~ ( x ,  g , . p ) :  fdp = 0 and J l  f12dp < - I ) ,  

Since we have shown before that for (X, &J, p) = (P, ~ ( p ) ,  p) the class 
Q = 9(@) satisfies (Mi) and is p-Donsker for any f i  we obtain from (3.3) 
the results of Finkelstein 191 and Richter [15], namely: 

(3.4) $(P) is a Strassen log log class for any probability memure p on 
me.  

That the same holds true for W = X(P) can be derived from the 
following result of Dudley ([GI, Theorem 7.1) and Kuelbs and Dudley ([12], 
Corollary 2.4), respectively : 

(3.5) (i) If (MI) is satisjed for a class V and p and if % is a Vapnik - 
Chervonenkis class (VCC), then %? is a p - Donsker class. 

(ii) If (MI) is satisfied for p and a VCC 'e, then 59 is a Strassen log log 
class for p. 

In this context, given a probability space (X, a, p), a class W c .g is 
called a Vapnik-Chervonenkis class if there exists a natural number s such 
that for all F c X with card (F) = s there exists a subset Fo of F which 
cannot be represented in the form F ,  = F n C for some CE%, i.e. "$?i does 
not cut all subset of F'. 

In view of (3.5) and (3.1) it remains to show that % = A?(@) is a VCC in 
order to get I 

(3.6) X(@) is a p-Donsker and a Strassen log log class for any pro- 
bability measure p on B(AJt). 

The following nice proof for X(RR) being a VCC was communicated to 
us by Flemming Tops$e; it is based on the auxiliary resuks (3.7) and (3.8): 

(3.7) RADOWS THEOREM (6. Valentine [17], Theorem 1.26). For any 
F c P, k 2 1, with card (F) 2 k+ 2 t h e  exists a partition of F into two 
disjoint subsets F ,  and F, such that Co (F,)nCo (F,) # O, where Co (Fj)  
denotes the convex hull of Fi. 
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(3.8) For any two closed Euclidean balls C, ,  Ci in P, k 2 1, we have 

Now, to prove that . f (m is a VCC it suffices to show that for each 
F c P with card{F) = k + 2  there exists a subset F, of F which cannot be 
represented in the form F ,  = F n C  for some C E X ( ~ ) .  For an indirect 
proof, suppose that for each F ,  c F there exists C E X ( @  such that Fo 
= FnC.  This implies that for the F,'s of (3.7) which decompose the given F 
there exist Ci E X(@) such that Fi = F n C,, i = 1, 2. Since F,  nF ,  = O, we 
have F1 c C1\C2 and F ,  C,\C,, and therefore -. 

- - 
Co(C, \C,)nCo(C,\C,) 3 Co(F,)nCo(F,) # 0, 

which contradicts (3.8). - 

(3.9) Remarks. The statement that i f (m is a V ~ C  follows abo from 
Theorem 7.2 of Dudley [6]. Furthermore, Dudley [8] even showed that the 
so - called Vapnik - Chervonenkis number V (X (925) equals k + 2 ; cf. also [I 91 
for an easier proof of the latter. In the same paper [I91 Wenocur and 
Dudley gave another proof for 9(RL) being a VCC (see also Proposition 
(7.12) of Dudley [6])  by computing its Vapnik-Chervonenkis number 
v ( ~ ( P ) )  to be k + 1 ; therefore the argument used above for X(P) is 
applicable to 4(m as well. 
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